An Iterative Method for Finite-Element Solutions of the Nonlinear Poisson-Boltzmann Equation

نویسنده

  • Ren-Chuen Chen
چکیده

A finite-element approach combined with an efficient iterative method have been used to provide a numerical solution of the nonlinear Poisson-Boltzmann equation. The iterative method solves the nonlinear equations arising from the FE discretization procedure by a node-by-node calculation. The performance of the proposed method is illustrated by applying it to the problem of two identical colloidal particles in a symmetric electrolyte. My numerical results are found in good agreement with the previous published results. Key–Words: finite-element method, Poisson-Boltzmann equation, colloidal particles interaction

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrostatic analysis of the charged surface in a solution via the finite element method: The Poisson-Boltzmann theory

Electrostatic potential as well as the local volume charge density are computed for a macromolecule by solving the Poisson-Boltzmann equation (PBE) using the finite element method (FEM). As a verification, our numerical results for a one dimensional PBE, which corresponds to an infinite-length macromolecule, are compared with the existing analytical solution and good agreement is found. As a ma...

متن کامل

Introduction to Finite Element Methods on Elliptic Equations

1. Poisson Equation 1 2. Outline of Topics 3 2.1. Finite Difference Method 3 2.2. Finite Element Method 3 2.3. Finite Volume Method 3 2.4. Sobolev Spaces and Theory on Elliptic Equations 3 2.5. Iterative Methods: Conjugate Gradient and Multigrid Methods 3 2.6. Nonlinear Elliptic Equations 3 2.7. Fast Multiple Method 3 3. Physical Examples 4 3.1. Gauss’ law and Newtonian gravity 4 3.2. Electrost...

متن کامل

An algebraic calculation method for describing time-dependent processes in electrochemistry – Expansion of existing procedures

In this paper an alternative model allowing the extension of the Debye-Hückel Theory (DHT) considering time dependence explicitly is presented. From the Electro-Quasistatic approach (EQS) introduced in earlier studies time dependent potentials are suitable to describe several phenomena especially conducting media as well as the behaviour of charged particles (ions) in electrolytes. This leads t...

متن کامل

Extensions to Study Electrochemical Interfaces - A Contribution to the Theory of Ions

In the present study an alternative model allows the extension of the Debye-Hückel Theory (DHT) considering time dependence explicitly. From the Electro-Quasistatic approach (EQS) done in earlier studies time dependent potentials are suitable to describe several phenomena especially conducting media as well as the behaviour of charged particles in arbitrary solutions acting as electrolytes. Thi...

متن کامل

Hybrid boundary element and finite difference method for solving the nonlinear Poisson-Boltzmann equation

A hybrid approach for solving the nonlinear Poisson-Boltzmann equation (PBE) is presented. Under this approach, the electrostatic potential is separated into (1) a linear component satisfying the linear PBE and solved using a fast boundary element method and (2) a correction term accounting for nonlinear effects and optionally, the presence of an ion-exclusion layer. Because the correction pote...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007